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Abstract: A road network represents a set of road objects in a geographic area and their inter-1

connections, and is an essential component of intelligent transportation systems (ITS) enabling2

emerging new applications such as dynamic route guidance, driving assistance systems, and3

autonomous driving. As the digitization of geospatial information becomes prevalent, a number4

of road networks with a wide variety of characteristics may coexist. In this paper, we present an5

area partitioning and subgraph growing (APSG) approach to the conflation of two road networks6

with a large difference in the level of details and representation rules. Our area partitioning (AP)7

scheme partitions the geographic area using the Network Voronoi Area Diagram (NVAD) of the8

low-detailed road network. Next, a subgraph of the high-detailed road network corresponding to9

a complex intersection is extracted and aggregated into a supernode so that high precision can10

be achieved via 1:1 road object matching. For the unmatched road objects due to missing road11

objects and different representation rules, we also propose a subgraph growing (SG) scheme that12

sequentially inserts a new road object while keeping the consistency of its connectivity to the13

matched road objects by the AP scheme. From the numerical results at Yeouido, Seoul, Korea, we14

show that our APSG scheme can achieve an outstanding matching performance in terms of the15

precision, recall, and F1-score.16

Keywords: Road network conflation; area partitioning; subgraph growing; intelligent transporta-17

tion systems.18

1. Introduction19

Geographic information systems (GIS) provide the solutions for capturing, ma-20

nipulating, analyzing and visualizing the geospatial data for many application fields,21

such as transportation, agriculture, commerce, etc. [1,2]. Initially, government agen-22

cies have built authoritative GIS because the construction of geospatial information23

requires extensive and accurate surveys of the land [3,4]. Recently, as the digitization24

of geospatial information has recently become prevalent, some portal sites or mobile25

service providers have constructed proprietary GIS that combines authoritative GIS,26

aerial photos, mobile-mapping service (MMS), and crowdsourcing data, etc. [5,6]. On27

the other hand, voluntary GIS, such as the openstreetmap (OSM), has been constructed28

by the participation of voluntary users carrying a GPS-enabled mobile terminal [7].29

Currently, more than 7.8 million registered users all around the world contribute to the30

OSM [8].31

A road network is a subset of GIS that focuses on road objects, attributes, and their32

interconnectivity. It is usually represented by a graph, where a node represents an33

intersection, an endpoint of a road, or a point of attribute change, whereas an edge34

represents a road segment connecting two nodes. The road network is an important35

component of many Intelligent Transportation System (ITS) applications. For example,36

turn-by-turn navigation establishes the shortest route connecting the origin and destina-37

tion in the road network. In addition, the current traffic situation on the road segment38
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Table 1. Characteristics of authoritative, proprietary, and voluntary road networks

Characteristics Authoritative [4] Proprietary[5,6] Voluntary [7]

Raw dataset Accessible Inaccessible Accessible
Quality Intermediate High Low
Level of detail Low High High
Real-time data Available Available Not available
Software packages None Limited Abundant

is indexed by the corresponding identifier in the road network, and then broadcast as39

public transportation data (PTD), which enables novel ITS applications, such as dynamic40

route guidance [9–12] and dynamic traffic management [13–15]. In a high-precision map41

for autonomous driving, each lane of a road can be represented in connection with the42

corresponding road segment of the road network [16].43

Table 1 shows the characteristics of authoritative, proprietary, and voluntary road44

networks. First, the authoritative road network called node-link map (NLM) is designed45

to support ITS applications in Korean major roads [4]. It provides the representation of46

a road object associated with its PTD attributes, such as average speed, road incidents,47

variable-message signs, and CCTV streamings [17]. Two major limitations of the NLM48

are the lack of software packages for ITS applications and the low-detailed representation49

of the road network. Second, the proprietary road network has good characteristics to50

support ITS services, but the access to its raw dataset and the ITS software packages51

is either very limited or impossible. The voluntary road network called the OSM road52

network (ORN) provides a detailed view of the road network as well as a variety of open-53

source software packages: map editing tools (Potlatch 2 [18] and JOSM [19]), rendering54

tools, (Mapnik [20] and the Tirex [21]), geocoding tools (Nominatim [22]), and especially55

routing tools (the open-source routing machine [23] and the Valhalla [24]). However, it56

has been reported that the quality of OSM objects obtained from crowdsourcing can be57

diverse in terms of accuracy, completeness, and consistency [25].58

Taking into account the characteristics of road networks, we consider the road59

network conflation (RNC) between the authoritative and voluntary road networks, i.e.60

NLM and ORN, for emerging new ITS services. The RNC can be seen as a generalization61

of the road network matching (RNM) in [26–40]: Given two road networks, the RNM62

finds the association between a set of objects in one road network and another set in the63

other, where both sets represent the same road entity. Since the RNM is done without64

any modifications of input road networks, it cannot address the problem of missing road65

objects that can be found in the voluntary road networks [25]. The RNC relaxes this66

restriction by allowing to add road objects to one input road network. Since each road67

network has its own strengths and weaknesses, a successful RNC solution can enhance68

the strengths and compensate for the weaknesses. In particular, it can suggest a new69

direction to the emerging new ITS applications through the integration of NLM-indexed70

real-time transportation data with ORN software packages. The challenge of RNC is71

how to address the difference between two road networks, including level of details72

(LoD) [30,35,40], missing road objects [30,31,35], and representation rules.73

In this paper, we present an area partitioning and subgraph growing (APSG) approach74

to the RNC that consists of two schemes: the area partitioning (AP) scheme for the RNM75

and the subgraph growing (SG) scheme for the unmatched NLM objects by the AP76

scheme. Our AP scheme exploits the network Voronoi area diagram (NVAD) in [41] to77

partition the map area into a set of regions centered on each node in the NLM graph. For78

each partitioned region, it extracts the ORN subgraph of a complex intersection and then79

aggregates it into an ORN supernode so that it can be associated with NLM node via80

1:1 node matching. For the unmatched NLM subgraph due to missing road objects and81

different representation rules, we also propose the SG scheme that sequentially inserts82

an ORN road object corresponding to the unmatched NLM subgraph while keeping the83
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consistency of its connectivity to the matched NLM subgraph by the AP scheme. The84

numerical results at Yeoui-do, Korea’s autonomous vehicle testing site, show that our85

APSG approach can achieve an outstanding RNC performance in terms of precision and86

recall. The contributions of this paper are summarized as follows:87

• As far as we are aware of, this is the first work to provide a formal definition of RNC88

that allows to insert new road objects into one road network only, and to present a89

novel APSG approach that achieves an outstanding matching performance;90

• The proposed AP scheme can accurately cluster the nodes at a complex intersection91

not only by partitioning the map area using the NVAD but also extracting the92

precise subgraph that yields the maximum number of paths across the NVAD; and93

• To address the problem of missing road objects and different representation rules,94

the proposed SG scheme inserts a new road object into the ORN subgraph so that it95

is as consistent as possible with the existing matchings by the AP scheme.96

The remainder of this paper is organized as follows. Section 2 introduces the related97

works of the RNC. Section 3 describes the characteristics of two road networks and98

formulate the RNC problem. In section 4, our AP scheme for the RNM is presented in99

detail. Section 5 presents the SG scheme for the unmatched NLM objects. The numerical100

results are discussed in section 6, and finally the conclusion of this paper is given in101

section 7.102

2. Related Work103

Given two input road networks, RNM is the process of associating road objects and104

combining their attributes that represent the same road entity without any modifications105

of the input road networks. In the literature, numerous research efforts have focused on106

the RNM [27–40]. For a complete solution to RNM, it is necessary to comprehensively107

take into account the geometric and topological characteristics of all road objects in both108

input road networks. However, since it is difficult to reflect their global information,109

most of the existing approaches sequentially match a road object with its counterpart110

based on its local information. Depending on the type of matching road objects, the111

existing RNM approaches are classified into the node (or point) [26–30], path (or line)112

[31–34,36,37], and subgraph matching [38,39].113

First, the node matching focuses on the matching between the points in the input114

road networks, such as intersections, traffic monitoring points, and the endpoints of115

overpass/underpass, bridges, and tunnels. The basic idea of node matching is to assess116

the proximity of the points to be matched, as well as the similarity of their geometric117

and topological properties of incident edges. The seminal work in [26] presents an118

iterative scheme for RNM between the United States Geological Survey (USGS) and the119

Bureau of the Census: At each iteration, given a part of nodes already matched with120

their counterparts, the remaining nodes are relocated by the rubber-sheet transformation121

and then a new set of 1:1 node matchings is obtained again. In [27], the 1:1 node122

matching between two road networks with an order of scale difference exploits a few123

geometric dissimilarity measures, such as the Euclidean distance, nodal degree, and124

average orientation difference of incident edges. Given a node matching of a node and125

its all neighbor nodes, paper [28] presents a round-trip walk scheme for evaluating the126

local topological consistency along the round-trip path across the two road networks127

and node matching. Although this paper also identifies the difficulties of 1:n and m:n128

node matchings, they are left as an open problem. By replacing the Euclidean distance129

of the DBSCAN clustering in [42] with the graph distance of road network, the authors130

in [30,40] presents a node clustering scheme that aggregates the multiple nodes at a131

complex intersection into a single node. However, their clustering approach aggregating132

all intermediates nodes with an empirically determined stroke-length threshold may133

include too many nodes that do not belong to the complex intersection (as shown in134

Figure 15(a)), which significantly degrades the overall matching performance. On the135

contrary, the proposed AP scheme can accurately cluster the nodes at the complex136
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intersection not only by partitioning the whole map area based on the NVAD, but also137

by extracting the precise subgraph that yields the maximum number of paths across the138

NVAD, which will be shown in section 6.3.139

Second, the path matching associates a path in one road network with another path140

in the other: Depending on the number of edges in each path, the path matching can141

be classified into 1:1, 1:n, m:1, and m:n edge matchings. A buffer-growing approach is142

proposed to address the most general m:n edge matching, where the merit function of143

potential matching pairs are computed by the mutual information of positions, angles,144

lengths, and forms within two-hop distance, and the one with the highest mutual145

information is eventually selected as the matching pair [31]. An adaptive algorithm146

is proposed to determine the appropriate buffer size of buffer-growing algorithm [32]:147

If the buffer size is too small, no candidate path can be found, and if the buffer size148

is too large, the computation complexity becomes high. However, the buffer-growing149

algorithm has two limitations: 1) To reduce the global errors between two input road150

networks, it requires an initial affine transformation using manually selected control151

points at the preprocessing step; and 2) To compute the mutual information, it also152

needs the statistical distribution of previously matched data from the same pair of input153

road networks, which is not usually available. A probabilistic relaxation scheme is154

also presented in [33], where it initializes the probability matrix based on the geometric155

dissimilarity of paths, iteratively updates the matching probabilities by evaluating the156

compatibility of neighbor candidate pairs, and selects the final 1:1 and 1:n matching157

pairs from the probability matrix. The probabilistic relaxation scheme in [34] improves158

the matching performance not only by considering both geometric and topological159

characteristics in the computation of probability matrix but also by inserting a virtual160

node in order to address m:n matching pattern. To mitigate the user errors in the OSM161

crowdsourcing process, our APSG approach to the RNC problem also inserts a new node162

and edge into the ORN subgraph so that it can better match with the NLM.163

Finally, the subgraph matching starts from an initial matching between the seed164

nodes, and the matched subgraph grows through a sequence of path and node matchings165

at each iteration. The semi-automated RNM in [38] consists of automated and interactive166

matching algorithms: The former includes the establishment of an initial matching for167

seed nodes and the expansion of the matching via cluster-based node/path matching168

algorithms, while the latter allows a human operator to manually correct the incorrect169

and improper initial matchings. On the other hand, the iterative matching algorithm in170

[39] initially performs the rubber-sheet transformation and topologically splits a path171

to maximize the number of 1:1 edge matchings. Then, starting from a subset of seed172

nodes, its combined edge and node matching algorithm gradually adds 1:1 matchings173

at the boundary of the existing matching set. Since the subgraph matching associates174

two existing road objects that represent the same road entity, its subgraph growing is175

determined by the similarity measure of their geometric and topological characteristics.176

The prime difference of our SG scheme is that new road objects are sequentially inserted177

into the subgraph of one road network to address the problem of missing road objects178

and different representation rules. In this process, the order of inserted road objects is179

carefully determined so that the resulting subgraph is as consistent as possible with the180

existing matchings by the AP scheme.181

3. Input Road Networks and Problem Specification182

In this section, we describe the characteristics of two road networks, i.e. NLM and183

ORN, and then formulate the RNC problem.184

3.1. Node-Link Map185

The Korean government has initiated the national GIS project in 1995, and com-186

pleted the construction of the geospatial database in 2009 [43]. The NLM is the road187

network of this database that represents major road objects in Korea [4]. It also provides188
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Figure 1. NLM graph representation around Yeoui2-gyo intersection

Table 2. The road_rank attribute in the NLM.

road_rank Explanation

101 Highway
102 Urban expressway
103 National road
104 Metropolitan city road
105 Aerial or inter-province road
106 Intra-province road
107 Intra-city or island road
108 Other roads

a unified identifier (ID) hierarchy to its road entity. In order to efficiently exchange the189

ITS information, the Korean law enforces that all ITS applications must use the NLM ID190

hierarchy to exchange road and traffic information [17].191

Figure 1 shows NLM graph representation of Yeoui2-gyo intersection, Yeoui-do,192

Seoul, Korea overlaid on top of the aerial view, where Gukhoe-daero (east-west road)193

and the access ramps of Nodeul-ro (north-south underpass) are interconnected. The194

NLM graph is a directed graph GN = (N ,L), where N is the set of nodes representing195

the points at which the road characteristics are changed, such as intersection (ni, nl ,196

and nm), traffic monitoring point, administrative boundary, and the endpoints of road,197

overpass, and underpass (nj and nk). A single NLM node ni ∈ N is used to represent a198

complex intersection (Yeoui2-gyo) without a detailed view of the internal road network.199

We define subgraph GN(ni) = (N (ni),L(ni)) consists of NLM node ni, its directly200

connected links (pink solid links in GN), and the neighbor NLM nodes (nj, nk, nl , and201

nm). An NLM node is placed at the crosspoint of two roads, where a road consists of two202

parallel links each of which represents a unidirectional road segment. In a dual carriage203

road, it is placed at the endpoint of two NLM links.204

In the NLM, the geometric shape of a link is approximated by a sequence of con-205

catenated line segments. For example, unidirectional links lji and lim are shown by pink206

solid lines with triangular marks for their directions. The underpass and overpass links207

are also placed in parallel with the main road segment with additional spacing between208

them. In this paper, we represent each NLM underpass/overpass by the pink dashed209

line, as shown in Figure 1. Each link has a set of attributes, such as link_id, f_node, t_node,210

road_rank, road_type, connect, road_use, etc., where the road_rank attribute represents the211

class of road segment as shown in Table 2, road_type specifies the type of road, such as212

overpass, underpass, bridge, tunnel, etc., connect specifies the type of ramps depending213

on road_rank attribute, and f_node and t_node represent the start and end node indexes of214

NLM link, respectively.215
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Table 3. Major highway tag of an OSM way.

highway tag group highway tag value

Roads motorway, trunk, primary, secondary, tertiary, unclassified, residential, service
Link roads motorway_link, trunk_link, primary_link, secondary_link, tertiary_link

Special roads living_street, pedestrian, track, bus_guideway, escape, raceway, road
Paths footway, bridleway, steps, path, cycleway

Sidewalks sidewalk
Cycleways cycleway

Figure 2. ORN graph representation around Yeoui2-gyo intersection

3.2. OpenStreetMap Road Network (ORN)216

The ORN is a subset of OSM objects with highway tag, where a tag is an ordered pair217

of (key, value) identifying the attribute of a road object. Table 3 shows the highway tag218

of way which is classified into a few groups. In each group, the tag values are ordered219

from the most important to the least important. The main focus of this paper is on the220

road and link road groups, where the former is a way for representing a road while the221

latter is a way for connecting two roads in a complex intersection. We initially prune all222

ORN objects in special roads, paths, sidewalks, and cycleways groups that do not correspond223

to the NLM objects. This pruning process removes approximately 20 % of unnecessary224

road objects from the original ORN. Furthermore, we also remove the subgraphs for225

underpass/overpass in both road networks because they can be easily matched via their226

attribute, such as NLM road_type, and ORN tunnel and bridge tags1.227

Figure 2 shows the ORN graph representation which can be modeled by undirected228

graph GO = (V , E). Contrary to NLM graph GN , ORN graph GO is designed to reflect229

the detailed road network at a complex intersection. This feature makes the ORN more230

suitable for ITS applications, such as navigation and autonomous driving.231

In GO, an ORN node v ∈ V is connected to at least three neighbor ORN nodes.232

In the RNC, NLM node n is associated with ORN subgraph GO(n), where the ORN233

subgraph can be a single ORN intersection node , e.g. GO(nl), disconnected subgraphs,234

e.g. GO(nj) and GO(nk), or a connected subgraph, e.g. GO(ni) and GO(nm), in Figure235

2. If an intersection consists of a single ORN intersection node, it is called a simple236

intersection; otherwise, a complex intersection.237

The atomic unit for representing an ORN road is a way w ∈ W which may span238

multiple ORN nodes [7]. If way w includes more than two ORN nodes, it is decomposed239

into consecutive ORN edges e ∈ E so that each edge connects two ORN nodes only. In240

Figure 2, the Gukhoe-daero in the ORN subgraph GO(ni) consists of edges with road tag241

group only, shown in solid green lines, whereas all remaining edges in GO(ni) belong to242

link road tag group, represented by dotted green lines. On the other hand, all intersecting243

1 In some figures, we still illustrate ORN underpass/overpass with green dashed line for the clarity of expression.
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(a) NLM graph of Yeoui-do roads (b) (Pruned) ORN graph of Yeoui-do roads

Figure 3. NLM and ORN graph representation of Yeoui-do roads

(a) Number of road objects (b) LoD difference at complex intersection (c) Different rules to represent merging lane

(d) No corresponding ORN nodes (e) No corresponding ORN edge (f) No corresponding ORN subgraph

Figure 4. Examples of the representational dissimilarities between NLM and ORN

edges at a simple intersection, such as GO(nl), belong to road tag group. In the case244

of dual carriage road, a distinct edge is used for each ORN edge whose direction is245

specified to the direction tag.246

3.3. Problem Specification247

Figure 3 shows the NLM and ORN graph representation of Yeoui-do roads which248

are given as the input of our RNC problem. The NLM in Figure 3(a) is a low-detailed249

road network consisting of major public roads only, while the ORN in Figure 3(b) has a250

much more detailed representation of the road network. Given NLM GN and ORN GO,251

the RNC problem is an association problem that finds the ORN subgraph corresponding252

to each NLM object while allowing to add new road objects to the ORN.253

Since each road network has its own rules for representing its road objects, there are254

several differences in representing road objects between two road networks as shown in255

Figure 4: Figure 4(a) shows different numbers of road objects, where the ORN shows256

both major and minor roads in a geographical area while the NLM displays major public257

roads only. Figure 4(b) illustrates different LoDs at a complex intersection, where the258

ORN illustrates all detailed connectivity at the intersection whereas the NLM aggregates259

them into a single NLM node. Figure 4(c) reveals two different rules to represent a260

merging lane, where it is a part of the mainline road in the NLM, while it is a part of261
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on-ramp with trunk_link tag in the ORN. Figure 4(d) shows two NLM nodes that do262

not have the corresponding ORN subgraphs at the crosspoints of the administrative263

boundary. Figure 4(e) illustrates an NLM link without the corresponding ORN object264

due to its omission during the crowdsourcing process of OSM. Figure 4(f) also shows an265

NLM subgraph that does not have the corresponding ORN subgraph due to the OSM266

crowdsourcing errors.267

To summarize, a comprehensive solution to the RNC problem needs to address the268

fundamental issues of these representational differences, as follows:269

1. To identify the ORN subgraph of a complex intersection in order to alleviate the270

LoD difference between two road networks,271

2. To find a reliable methodology to cope with the differences in the representation of272

merging lane and administrative boundary, and273

3. To create a new ORN subgraph corresponding to the unmatched NLM subgraph274

while keeping the consistency of its connectivity to the matched NLM subgaph.275

4. Area Partitioning for LoD Difference at a Complex Intersection276

For a given NLM node ni with NLM subgraph GN(ni) and ORN graph GO = (V , E),277

the challenging task is to accurately extract ORN subgraph GT(ni) against a wide variety278

of intersection topology as shown in Figure 4(b). An inaccurate ORN subgraph incurs279

an incorrect matching which in turn influences the accuracy of another matching. This280

propagation eventually results in severe degradation of RNC performance.281

Our AP scheme first computes the region of the map dedicated to NLM node ni282

in which the corresponding ORN subgraph may exist. Then, it extracts ORN subgraph283

G∗O(ni) along the path connecting each pair of entering and exiting points across the284

region boundary, taking into account the turning information and geometry of intersec-285

tion. Finally, ORN subgraph G∗O(ni) is replaced by an ORN supernode v∗i so that it can286

be matched with NLM node ni via 1:1 node matching.287

4.1. Network Voronoi Area Diagram (NVAD) for Partitioning Map Area288

Given NLM subgraph GN(ni) and the corresponding map area A(ni) around ni,
the first task of our AP scheme is to partition this area into regions, where each region is
centered at an intersection in N (ni). A simple method called the Voronoi diagram (VD)
partitions the map area A(ni) based on the Euclidean distance [41]. The basic idea is
to associate a point n ∈ A(ni) with the region of the closest intersection nx, called the
Voronoi cell V(nx), in terms of the Euclidean distance metric:

V(nx) = {n| ‖n− nx‖ ≤ ‖n− ny‖ ∀y 6= x, nx, ny ∈ N (ni)}, (1)

where N (ni) = {ni, nj, nk, nl , nm} for NLM graph GN(ni) in Figure 5(a). Given an ORN289

node n ∈ V(nj) in map area A(ni), the Euclidean distances from three closest NLM290

nodes are shown in Figure 5(a). For two NLM nodes nx and ny (ny ∈ N (ni)\{nx}), the291

boundary of Voronoi cells becomes a hyperplane that is equidistant from both NLM292

nodes. Finally, Voronoi cell V(nx) is constructed by intersecting all half-spaces in which293

NLM node nx is located. For example, Voronoi cell V(ni) is illustrated with the blue294

transparent quadrilateral in Figure 5(b).295

However, given NLM subgraph GN(ni), the Euclidean norm is no longer a fair
measure to evaluate the distance between point n ∈ A(ni) and the set of NLM nodes in
N (ni). This is because the Euclidean distance metric does not account for the distance
from the curved roads in GN(ni). To address this problem, our AP scheme adopts the
network Voronoi area diagram (NVAD) whose measure reflects two distance factors [41]:
First, if point n is on subgraph GN(ni), the distance should be the length of shortest path
to NLM node nx ∈ N (ni) in GN(ni), called the graph distance dG(n, nx). If point n lies
in A(ni)\GN(ni), the measure should also consider the projection distance dP(n, nx) to
the closest NLM link of subgraph GN(ni). Figure 5(c) shows these distances between



Version December 30, 2021 submitted to Sensors 9 of 24

(a) Euclidean Distance of Voronoi diagram (b) Voronoi cell V(ni) for NLM node ni

(c) Distance metrics and projection boundary (d) NVAD V∗(ni) for NLM node ni

Figure 5. VD and NVAD to partition map area A(ni) around NLM node ni.

point n and two closest intersections ni and nl . Consequently, the distance metric of
NVAD is defined as the sum of these two distance components, i.e.,

‖n− nx‖ = dG(n, nx) + dP(n, nx). (2)

To determine the NLM link onto which a given point n is projected, we choose an296

example of map area Ajm(ni) surrounded by unidirectional NLM links lji and lim in297

Figure 5(c), where the former (latter) consists of two (three) line segments. The k-th line298

segment and vertex of NLM link lji are denoted by lji(k) and nji(k), respectively, where299

nji(0) = nj and nji(2) = ni. Our approach draws the equiangle boundary starting from300

the center of intersection ni until its projection approaches the endpoint of shorter line301

segment nim(1). Notice that any points on this projection boundary are equidistant from302

both NLM links lji and lim. In Appendix A, we demonstrate that the projection boundary303

curve becomes a concatenation of linear or parabolic segments. Figure 5(c) shows the304

resulting blue dotted projection boundary of map area Ajm(ni).305

Figure 5(d) shows all projection boundaries that partition map area A(ni) into four306

projection areas each of which has a pair of NLM links between ni and its neighbor NLM307

node. At the middle point of these links, we draw a perpendicular line that bisects the308

projection area. Then, NVAD cell V∗(ni) is determined by the union of the bisected map309

area in which NLM node ni is located, as shown by the blue transparent polygon in310

Figure 5(d). For each NLM link l passing through the NVAD cell boundary, we finally311

build a list of candidate ORN edges El = {el(1), el(2), · · · } of the same direction whose312

distance along the boundary line is less than threshold δ. For example, in Figure 5(d),313

NLM links lji and lik have two ORN edges in their lists, while all remaining NLM links314

have only one ORN edge. In the next section, the candidate ORN edges will be examined315

to be the correspondent of an NLM link.316
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(a) Simple intersection (b) Exceptional case I (c) Exceptional case II

Figure 6. Candidate ORN paths between the ORN edges closest to lji and closest to lik at the
boundary of NVAD cell V∗(ni)

4.2. Extraction of Candidate ORN Subgraph317

Given NVAD cell V∗(ni), allowable turn information at NLM node ni, and set El318

of candidate ORN edges for NLM link l, the objective of this section is to extract the319

corresponding ORN subgraph G∗O(ni) in V∗(ni) that corresponds to NLM node ni. Our320

key observation is that an intersection allows at most one path for each pair of roads, where321

one enters to and the other exits from NVAD cell V∗(ni). Starting with null ORN subgraph322

having no ORN node and edge, the basic idea of our approach is to sequentially insert an323

ORN path passing through the intersection along which the turn restriction is satisfied324

at each pair of consecutive ORN edges. Without loss of generality, we focus on the325

construction of ORN path pjk as shown in Figure 6.326

Figure 6(a) shows an example of simple intersection, where NLM node ni connects327

a two-way road (lki and lik) and three one-way roads (lji, lil , and lmi). Due to the LoD328

difference, the ORN subgraph in V∗(ni) consists of two components: 1) the true ORN329

subgraph almost overlapped with NLM subgraph GN(ni), and 2) the remaining ORN330

subgraph representing a minor road network around intersection ni. Denoting by vI
j331

and vO
k the crosspoints of the entering and exiting ORN edges at the boundary of NVAD332

cell V∗(ni), respectively, there are three candidate paths in Figure 6(a): pjk(1) = vI
j →333

vi → vO
k (red solid path), pjk(2) = vI

j → vp → vq → vr → vO
k (red dashed path),334

and pjk(3) = vI
j → vp → vt → vs → vO

k (red dotted path). Among these paths, our335

candidate ORN subgraph extraction (COSE) scheme chooses the path that has smallest sum336

of turning angles regardless of its direction. For example, path pjk(1) has the smallest337

total turning angle since it makes only one left-turn at vi compared to three turns in the338

other two paths.339

Although ORN subgraph G∗O(ni) is much more complex than NLM subgraph340

GN(ni) around a complex intersection, it is surprising that our key observation is valid341

for all complex intersections in Yeoui-do except for the blue dashed paths in Figures342

6(b) and 6(c). They are evidently originated from the crowdsourcing error that omits a343

left-turn restriction at ORN node vi by the participating users, and eventually, turn out to344

be invalid paths. Unfortunately, these human errors are inevitable in the crowdsourcing-345

based ORN. To exclude these exceptional paths from ORN subgraph G∗O(ni), we exploit346

the second key observation that the geometry of connecting roads in a complex intersection is347

designed in a way that the curvature changes linearly with the curve length, which is known as348

the clothoids. Based on this observation, the COSE scheme discards a path, if it has two349

consecutive edges and the angles between them abruptly change, e.g. the blue dashed350

path at node vi in Figures 6(b) and 6(c).351

The final step of the COSE scheme is the derivation of ORN subgraph G∗O(ni) for352

NVAD node ni. It first calculates the number of allowable ORN paths for each ingress-353
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Figure 7. ORN supernode v∗i replacing the final ORN subgraph G∗O(ni)

Figure 8. Example of RNM results

egress pair of ORN edges at the boundary of NVAD cell V∗(ni). Then, it chooses the354

optimal ORN subgraph G∗O(ni) = (V∗(ni), E∗(ni)) that yields the largest number of355

allowable ORN paths. Finally, it extracts all ORN nodes from V∗(ni). If there are more356

than one ORN node in V∗(ni), our AP approach replaces them with ORN supernode357

v∗i located at the center of them, as shown in Figure 7. By this replacement, the node358

matching becomes a simple 1:1 matching between NLM node ni and ORN supernode359

v∗i .360

4.3. Classification of RNM Result361

Figure 8 shows the matching results between NLM subgraph GN(ni) and ORN362

graph GO. Depending on which road object belongs to ORN subgraph G∗O(ni), both node363

and edge matching results can be one of the following four matching types: correct match364

(CM), incorrect match (IM), partial match (PM), and missing match (MM). For each NLM365

node, the node matching result can be determined as follows:366

• The red dashed lines in Figure 8 represent the CM between NLM and ORN nodes,367

where the sets of true ORN nodes for NLM nodes ni, nj, nk, and nl are denoted by368

VT(ni) = {vi,1, vi,2, vi,3}, VT(nj) = vj, VT(nk) = vk, and VT(nl) = vl , respectively;369

• A node matching becomes MM, if its set of ORN nodes is empty, i.e. V∗(·) = φ;370

• A node matching becomes IM, if its set of ORN nodes is disjoint with the set of true371

ORN nodes, i.e. V∗(·) ∩ VT(·) = φ; and372

• A node matching becomes PM, if its set of ORN nodes satisfies two conditions373

V∗(·) ∩ VT(·) 6= φ and V∗(·) 6= VT(·).374

At the boundary of two adjacent NVAD cells V∗(ni) and V∗(nj), the COSE scheme375

also yields a solution to the edge matching between NLM link l and two ORN edges:376
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(a) Unmatched NLM node in merging lane (b) Unmatched NLM node at administrative boundary

Figure 9. Examples of unmatched single NLM node ni

one from set El ∩ E∗(ni) in area A(ni) and the other from El ∩ E∗(nj) in area A(nj),377

respectively. Similarly, the type of edge matching result is determined as follows:378

• The blue dashed lines in Figure 8 represent the CM between NLM link and ORN379

edges, where the sets of true ORN edges for NLM link lij, lik, and lil are denoted380

by ET(lij) = {(vi,1, vm), (vm, vj)}, ET(lik) = (vi,2, vk), and ET(lil) = (vi,3, vl),381

respectively;382

• An edge matching becomes MM, if its set of ORN edges is empty, i.e. E∗(·) = φ;383

• An edge matching becomes IM, if its set of ORN edges is disjoint with the set of true384

ORN edges, i.e. E∗(·) ∩ ET(·) = φ; and385

• An edge matching becomes PM, if its set of ORN edges satisfies two conditions386

E∗(·) ∩ ET(·) 6= φ and E∗(·) 6= ET(·).387

Finally, we partition NLM graph GN into the matched and unmatched NLM sub-388

graphs G∗N = (N ∗,L∗) and GN = (N ,L), where the former includes all NLM road389

objects of CM, IM, and PM types, while the latter has those in MM type only.390

5. ORN Subgraph Growing for Unmatched NLM Subgraph391

The unmatched NLM subgraph is mainly originated from missing ORN objects in392

the OSM crowdsourcing process or the differences in representation rule. In general, a393

connected subgraph of unmatched NLM graph GN can be either NLM node ni, NLM link394

lij, or NLM component CN consisting of at least two NLM road objects. First, we present395

two schemes for unmatched single NLM node due to the differences in representation396

rule: the NVAD cell expansion (NCE) scheme for a merging lane in Figure 4(c) and the397

NLM node projection onto ORN edge (NPOE) scheme for administrative boundaries in398

Figure 4(d). Second, we present the ORN edge insertion (OEI) scheme for unmatched399

single NLM link in Figure 4(e). Finally, we present the sequential ORN subgraph growing400

(SOSG) scheme for unmatched NLM component in Figure 4(f). Finally, we also address401

the internal structure design of new ORN nodes by the SG scheme.402

5.1. Schemes for Unmatched Single NLM Node403

We present two schemes to address the difference in representation rule: the NCE404

scheme for merging lane and the NPOE scheme for the administrative boundary. This405

difference results in an isolated NLM node as shown in Figure 9.406

5.1.1. NCE Scheme for Merging Lane407

Figure 9(a) shows a typical example of different rules for representing a merging408

lane, where it is a part of the mainline road in NLM while it is a part of the on-ramp in409

ORN. As a result, the ORN edge connecting v∗k and v∗i is longer than the corresponding410

NLM link lki. This rule difference results in unmatched single NLM node ni with411

|L(ni)| ≥ 3 because its corresponding ORN node v∗i is located outside its NVAD cell412

V∗(ni).413
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Figure 10. Example of OEI scheme for correspondent-missing NLM link lij

To address this problem, we present the NCE scheme as follows: It first expands its414

NVAD cell V∗(ni) through the union of all NVAD cells in map area A(ni), i.e. ∪V∗(nx)415

for each nx ∈ N (ni). Next, the COSE scheme in section 4.2 is used to extract the416

corresponding ORN node v∗i from all possible ORN paths, e.g. paths v∗j → v∗l and417

v∗k → v∗l in Figure 9(a).418

5.1.2. NPOE Scheme for Administrative Boundary419

Figure 9(b) shows an example of different rules for indicating a road crossing an420

administrative boundary: Two nodes ni and nj are created to represent the administrative421

boundary in the NLM links, while no corresponding ORN node exists in NVAD cells422

V∗(ni) and V∗(nj), respectively. To address this problem, we propose the NPOE scheme423

that projects the unmatched NLM nodes ni and nj onto the ORN subgraphs GO(ni) and424

GO(nj) obtained from the COSE scheme, respectively. For example, Figure 9(b) shows425

two ORN nodes v∗i and v∗j that are matched with unmatched NLM nodes ni and nj,426

respectively. If the unmatched NLM node is on dual carriage roads, the NPOE scheme427

collapses the projected ORN nodes into an ORN node located at the middle of them (See428

ORN node v∗3 in Figure 11(b)).429

5.2. OEI Scheme for Missing ORN edge430

Figure 10 shows an example of OEI scheme to address the problem that there is no
ORN edge corresponding to NLM link lij. In this example, both endpoints ni and nj of
NLM link lij are matched with ORN nodes v∗i and v∗j via the AP scheme, respectively.
However, the ORN edge connecting these ORN nodes is missing possibly due to user
errors in the OSM crowdsourcing process. The goal of this section is to insert an ORN
edge e∗ij that corresponds to NLM link lij. To aim this, our OEI scheme considers three
factors: 1) the displacement ∆i between NLM node ni and ORN node v∗i , 2) the angle
difference α between NLM line segment (ni, nj) and ORN line segment (v∗i , v∗j ), and 3)
the length ratio β of ORN line segment (v∗i , v∗j ) to NLM line segment (ni, nj), where

β =

∥∥∥v∗i − v∗j
∥∥∥∥∥ni − nj
∥∥ . (3)

The OEI scheme first computes an orange dashed link between NLM nodes ni and431

nj which is equally distant from both NLM links lij and l ji. Next, it obtains a blue dashed432

link by shifting the orange dashed link by ∆i so that it can start from ORN node v∗i . Then,433

it computes a red dashed link by multiplying the scaling factor β to the blue dashed line.434

Finally, ORN edge e∗ij in Figure 10 is obtained by rotating the red dashed link by angle α435

around ORN node v∗i .436
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(a) Initial unmatched NLM component CN (b) After the extraction of n3 from Q

(c) After the extraction of n2 from Q (d) The ORN subgraph GO(CN) for CN

Figure 11. Example of SOSC scheme for unmatched NLM component CN

5.3. SOSG Scheme for Unmatched NLM Component437

During the OSM crowdsourcing process, the ORN subgraph GO(CN) corresponding438

to unmatched NLM component CN may not exist due to the misinterpretation of the439

road network (See the example in Figure 4(f)). Figure 11(a) shows an example of NLM440

component CN consisting of three unmatched NLM nodes (n1, n2, and n3), and 16441

unmatched NLM links: Two unmatched NLM links connect two unmatched NLM nodes442

in CN while 14 unmatched NLM links pass through the boundary of CN . The objective443

of our SOSC scheme is to construct a simple ORN subgraph GO(CN) that corresponds to444

NLM component CN .445

The basic idea of the SOSC scheme is to sequentially examine an unmatched NLM446

node in CN , and for each unmatched NLM node, to construct the corresponding ORN447

subgraph using both OEI and NPOE schemes. It maintains priority queue Q that448

determines the order of unmatched NLM nodes sequentially extracted from CN . To449

better associate with the neighbor NLM nodes in matched NLM subgraph G∗N , the key450

ki of unmatched NLM node ni in priority queue Q is defined as the ratio of unmatched451

neighbor NLM nodes to all neighbor NLM nodesN (ni)\{ni}. Since the three key values452

are k1 = 1
3 , k2 = 1

2 , and k3 = 1
4 in Figure 11(a), NLM node n3 is first extracted from Q.453

For unmatched NLM node n3 extracted from Q, it first investigates the existence of454

an ORN edge corresponding to NLM links l3j and/or lj3, where NLM node nj belongs455

to the set of matched neighbor NLM nodes N (n3) ∩ N ∗. Figure 11(a) shows a dual456

carriage edge between two neighbor ORN nodes v∗6 and v∗8 . In this case, it uses the NPOE457

scheme to insert ORN node v∗3 to the center of two projection points onto ORN edges458

(v∗6 , v∗8) and (v∗8 , v∗6) in Figure 11(b). Once ORN node v∗3 is created, the OEI scheme is459

used to insert a new ORN edge e∗37. Then, unmatched NLM node n3 and new NLM links460

l36, l63, l37, l38, and l83 that have their corresponding ORN edges are removed from NLM461

component CN , and then inserted to matched NLM subgraph G∗N , which reduces the462

key value of unmatched NLM node n2 to k2 = 1
4 as shown in Figure 11(b).463
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(a) Simple intersection (b) Dual carriage road (c) Complex intersection

Figure 12. Addition of ORN subgraph to the existing ORN (super)node v∗i

Next, unmatched NLM node n2 extracted from Q is examined to find an existing464

ORN edges corresponding to NLM links l23, l25, l52, l29, and l92. Since there is no such465

ORN edge, the SOSG scheme overlays ORN node v∗2 on top of n2, and uses the OEI466

scheme to insert these ORN edges e∗23, e∗25, and e∗29 as shown in Figure 11(c). The newly467

matched NLM objects are removed from CN and inserted to matched NLM subgraph468

G∗N . Finally, the key value of the last NLM node n1 is updated to zero (k1 = 0).469

Similarly, the last unmatched NLM node n1 in CN has one ORN edge between ORN470

nodes v1 and v∗4 . The SOSG scheme creates an ORN node v∗1 at the projection point onto471

the extended ORN edge, and inserts an ORN edge v1v∗1 in Figure 11(d). Finally, it also472

uses the OEI scheme to add the ORN edges e∗12, e∗14, and e∗110, which completely covers473

the unmatched NLM component CN .474

5.4. Internal Structure Design of New ORN Node475

Figure 12 shows a few examples of adding a set of new ORN edges to an existing476

ORN (super)node v∗i , where green road objects represent the existing ORN subgraph,477

and red objects represent new ORN subgraph by the SG scheme. There are three possible478

cases in the addition of a new ORN subgraph: 1) simple intersection, 2) dual carriage479

road, and 3) complex intersection.480

To make the resulting ORN subgraph simple for the first two cases, our SG scheme481

restricts that all ORN paths through the intersection must intersect at the same ORN node.482

In addition, a new relation must be inserted into the ORN in order to reflect a turn483

restriction between a new ORN edge and an existing ORN edge. Since there is only484

one ORN node at a simple intersection, the new ORN edge is directly connected to485

ORN node v∗i as shown in Figure 12(a). On the other hand, the ORN supernode v∗i for486

dual carriage road is placed in the middle of two parallel ORN edges. In Figure 12(b),487

our SG scheme overlays an ORN node v∗i,1 to this supernode, and then requires that all488

additional ORN edges must intersect at this point. To interconnect the dual carriage489

edges to ORN node v∗i,1, it also inserts two internal (red dashed) ORN edges which490

connect this node and its projection onto two opposite ORN edges, i.e. ORN nodes v∗i,2491

and v∗i,3. To avoid the u-turns via new internal ORN edges, it is also required to add an492

additional ORN relation that restricts the u-turns between two dual carriage edges.493

However, it is not easy to define a single ORN node for connecting all ORN edges494

in a complex intersection due to the wide diversity of its internal structure. Figure495

12(c) shows an example of ORN subgraph for complex intersection, where the set of496

ORN nodes are partitioned into two subsets: 1) the subset V∗i,C of core ORN nodes where497

each ORN edge is connected to another ORN node in the complex intersection, and498

2) the subset V∗i,B of boundary ORN nodes having at least one ORN edge that connects499

to an ORN node outside the complex intersection. For example, V∗i,C = {v∗i,1} and500

V∗i,B = {v∗i,2, v∗i,3, v∗i,4, v∗i,5} in Figure 12(c). In order to add a new ORN edge regardless501

of the internal structure, the SG scheme first adds a new boundary ORN node v∗i,6, and502

then add a new (red dashed) ORN edge that directly connects this new node with every503
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Table 4. Statistical description of NLM and ORN in Yeouido.

Road network Spatial extent Number of
nodes

Number of
edges

Total
road length

NLM 3.5 km x 2.8 km 177 434 124.74 km
ORN (Pruned) 3.5 km x 2.8 km 590 1005 140.67 km

other boundary ORN node. To reflect a turn restriction between a new ORN edge and504

an existing ORN edge, a new relation should be inserted into the ORN similarly to the505

previous two cases.506

6. Numerical Results507

In this section, we present the numerical results of the RNC between ORN and508

NLM at Yeoui-do island, Seoul, Korea: The former is extracted from the XML file at509

the official OSM website[44] and the latter is a shape file downloaded from the Korean510

ITS website[4]. Both road networks are imported to PostgreSQL database for the RNC511

[45]. Table 4 shows the statistical information on the area, the number of nodes, road512

segments, and the total length of road networks.513

6.1. The Existing RNM Schemes514

In this paper, the proposed AP scheme is compared with three existing node match-515

ing schemes, as follows:516

• Nearest first matching (NFM): In the NFM, the Euclidean distance between each517

NLM and ORN node pair that is within a distance threshold (100 m) is initially518

stored in a priority queue. At each step, the matching (n∗i , v∗j ) with the smallest519

Euclidean distance in the priority queue is chosen, and then all remaining matchings520

with either NLM node n∗i or ORN node v∗j are removed from the priority queue.521

• Round-trip walk matching (RWM) [28]: Given an initial matching, the RWM522

check the topological consistency of the matching through the following three523

steps: First, it extracts the corresponding ORN node vj of each neighbor NLM524

node nj ∈ N (ni)\ni. Second, for each corresponding ORN node vj, it examines525

the topological consistency by checking whether the corresponding ORN node vi526

of NLM node ni is also its neighbor ORN node or not. Finally, the ratio of the527

topologically inconsistent neighbor node is stored in a priority queue so that an528

NLM node with the highest topological consistency is extracted first for the final529

matching.530

• RWM with DBSCAN clustering (RWM-DC): Since both NFM and RWM are 1:1531

node matching, they do not account for the LoD difference at a complex intersection.532

To mitigate this problem, the RWM-DC scheme combines the RWM with a clustering533

algorithm called the DBSCAN [40,42].534

Given all pairs of matched NLM and ORN nodes, we use the score-based matching535

(SM) for the edge matching of the above three schemes [37]. The SM first computes a536

discrete similarity score based on multiple independent measures, i.e. the Hausdorff537

distance[39], orientation[31,39], mean perpendicular distance, and the nodal degree of538

endpoint nodes [28], and then chooses a pair with the highest score.539

In our AP scheme, the threshold δ in section 4.1 is chosen to the maximum width of540

the general highway and local road in Korea (34 m) [3].541

6.2. RNM Results542

In this section, we compare the RNM results of our AP scheme with those of three
other RNM schemes. In section 4.3, the matching result can be either CM, IM, PM, or MM.
If we think of the RNM result as a binary classification, the CM can be interpreted as true
positive, and the IM and PM as false positive. On the other hand, if we look at how a true
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Figure 13. Ratio of node matching results

ORN subgraph is matched to which NLM object, we can classify the matching result into
three different cases, as follows: First, a matching scheme successfully finds the NLM
object that corresponds to the true ORN subgraph, the matching result becomes CM.
Second, if it fails to find the right NLM object corresponding to the true ORN subgraph,
the matching result is classified into failed match (FM), which can be interpreted as false
negative: The FM can be further partitioned into PM, IM, and MM. Third, there is an
exceptional case of binary classification, where the true ORN subgraph does not exist
due to the errors in the OSM crowdsourcing process. Denoting the cardinality of type-m
matching result by |M(m)|, the precision, recall, and F1-score of matching result can be
defined as follows:

Precision =
|M(CM)|

|M(CM)|+ |M(IM)|+ |M(PM)| , (4)

Recall =
|M(CM)|

|M(CM)|+ |M(FM)| , (5)

and
F1-Score =

2× Precision× Recall
Precision + Recall

, (6)

respectively.543

6.2.1. Node Matching Results544

Figure 13 shows the ratio of node matching results against the RNM schemes. We545

first observe that the proposed AP scheme can achieve an outstanding CM ratio of 0.73546

at least 14.1 percent higher than the other RNM schemes: Its (CM, PM, IM, MM) ratio547

is (0.73, 0.028, 0.006, 0.237). The NFM and RWM schemes that do not support node548

clustering show almost similar RNM performance: The (CM, PM, IM, MM) ratios of549

NFM and RWM schemes are (0.582, 0.164, 0.113, 0.141) and (0.588, 0.164, 0.102, 0.147),550

respectively. The inaccurate node clustering of RWM-DC degrades the CM ratio to 0.503551

while increasing the PM and MM ratios to 0.232 and 0.175, respectively. The excellent552

node clustering performance of AP scheme originates from its low false positive ratio553

of 0.028, which is at least 8.29 times smaller than those of the other RNM schemes.554

Furthermore, the AP scheme has the lowest IM ratio of 0.006 while those of the other555

RNM schemes are at least 0.09. Since the node matching is performed sequentially for556

each NLM node, an IM of the previous NLM node may block the CM of a subsequent557

NLM node, which can significantly reduce the CM ratios of the other RNM schemes.558

The only problem with the AP scheme is its relatively high MM ratio, which will be559

addressed in section 6.3.560

Figure 14 shows the precision, recall, and F1-score of node matching in the NFM,561

RWM, RWM-DC, and AP schemes. It can be seen that the precision, recall, and F1-562

score of the AP scheme are at least 26.7, 17.1, and 21.7 percent higher than the other563
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Figure 14. Precision, recall, and F1-score of node matching

(a) (b)

Figure 15. Example of node clustering in the (a) RWM-DG and (b) AP schemes

RNM schemes, respectively. Similar to the ratio of node matching result, NFM and564

RWM schemes show a similar precision, recall, and F1-score: The difference in their565

performance is within 1.1 percent. The RWM scheme shows the lowest precision, recall,566

and F1-score due to its inaccurate node clustering. For example, the node clustering567

results of RWM-DC and AP schemes are shown in Figures 15(a) and 15(b), respectively,568

for the same complex intersection in the shaded region. While the AP scheme extracts the569

exact ORN nodes for the complex intersection, the RWM-DC scheme cannot distinguish570

three red ORN nodes belonging to minor intersections.571

To summarize, the proposed AP scheme achieves an excellent node matching572

performance, in terms of precision, recall, and F1-score, compared with the existing three573

RNM schemes.574

6.2.2. Edge Matching Results575

In this section, the edge matching performance of the AP scheme is compared with576

those of three existing RNM schemes in section 6.1.577

Figure 16 shows the ratio of edge matching results against the RNM schemes. We578

observe that the proposed AP scheme shows an excellent edge matching performance579

compared with the other RNM schemes: It has the highest CM ratio of 0.873 (at least 32580

percent higher than the others), the lowest false positive ratio of 0.05 (at least 12.7 percent581

lower than the others), and the lowest MM ratio of 0.076 (at least 19.4 percent lower than582

the others). This outstanding performance of AP scheme comes from its highly accurate583

node clustering at a complex intersection that minimizes both PM and IM ratios, which584

restricts the propagation of false positive in the subsequent edge matching. On the other585

hand, an inaccurate node matching of three RNM schemes results in a high MM ratio of586

edge matching. This is because, in a generic road network with limited nodal degree,587
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Figure 16. Ratio of edge matching results
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Figure 17. Precision, recall, and F1-score of edge matching.

a change in the endpoints of ORN edge leads to a non-existent ORN edge with high588

probability.589

Figure 17 shows the precision, recall, and F1-score of the edge matching against the590

RNM schemes. The AP scheme achieves superior edge matching performance with at591

least 18.8, 34.1, and 27.5 percent higher precision, recall, and F1-score, respectively, than592

the other RNM schemes. We also observe that the high MM ratio of three existing RNM593

schemes significantly degrades their recall performance.594

From these results, we demonstrate that the proposed AP scheme can also achieve595

an outstanding edge matching performance compared with the existing RNM schemes.596

6.3. RNC Results597

In this section, we investigate how our APSG scheme can further improve the598

matching performance of AP scheme. Table 5 lists the number of CM, PM, IM, and MM599

results of AP and APSG schemes at Yeoui-do island consisting of 177 NLM nodes and600

434 NLM links. By adding ORN objects, the APSG scheme further improves the node601

matching performance of AP scheme: The number of CM results is increased by 41,602

while the number of MM results is reduced by 42. As a result, it can increase the recall by603

8.29 percent while slightly improving the precision by 0.49 percent. The APSG scheme604

also improves the edge matching performance compared with AP scheme: It improves605

both the precision and recall of AP scheme by 1.8 and 3.19 percent, respectively.606

In Table 5, we also found the limitation of our APSG scheme in an exceptional607

node matching where an MM result of AP scheme becomes an IM result by the APSG608

scheme. The shaded region in Figure 18 shows the complex intersection consisting of609

two nodes in both road networks. The NLM interprets this complex intersection as the610

combination of two intersections: ni connects a road with an underpass and nj connects611

three NLM links. On the other hand, the ORN interprets it as a single intersection with612
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Table 5. Number of matching results |M(·)| in AP and APSG schemes

Number of Node Matching Edge Matching
Matches CM PM IM MM FM CM PM IM MM FM

AP 129 5 1 42 18 379 18 4 33 28
APSG 170 5 2 0 7 418 12 4 0 16

Figure 18. IM case in the APSG.

ORN nodes vk and vl interconnecting a dual carriage road, a road, and an underpass.613

This difference in the interpretation of road objects leads to 2:2 node matching which614

cannot be addressed by our APSG scheme: In the AP scheme, the matching results615

for NLM nodes ni and nj are MM and PM, respectively. The APSG scheme projects616

NLM node ni onto the ORN nodes vm and vn in dual carriage road, which changes the617

matching result to IM.618

Finally, the matching results of our APSG scheme at Yeoui-do island are shown in619

Figure 19, where Figures 19(a) and 19(b) illustrate the node and edge matching results,620

respectively. The blue subgraph represents the new subgraph added to the ORN by the621

APSG scheme. In addition, the thick dark green, orange, and red lines indicate the CM,622

PM, and IM results, respectively, between NLM and ORN objects. We can see that the623

proposed APSG scheme achieves outstanding node and edge matching performance.624

7. Conclusions625

This paper presents the APSG approach to the conflation between administrative626

and voluntary road networks. The AP scheme addresses the LoD problem of complex627

intersection through the partition of map area, extraction of candidate ORN subgraph,628

and aggregation to a supernode. For the unmatched NLM subgraph, the SG scheme629

sequentially inserts an ORN object while satisfying the connectivity with the matched630

NLM subgraph by AP scheme. The numerical results show that our APSG scheme631

achieves an outstanding node and edge matching performance in terms of the precision,632

recall, and F1-score, compared with the existing RNM schemes.633

Appendix A Transient Curve of Projection Boundary634

In this appendix, we identify the transient curve of projection boundary around a635

vertex in an intersection area. Figure A1 shows two examples of projection boundary in636

area Ajm(ni), where vertex nji(p) connects two NLM line segments lji(p) and lji(p + 1)637

in one projection side, and NLM line segment lim(q) is common on the other projection638

side. Starting from NLM node ni, the projection boundary is the bisector b1 of the639

angle created by lji(p + 1) and lim(q), and is illustrated by the blue dotted line in both640

examples. It is clear that every point on this projection boundary should have the same641

projection distance to lji and lim, e.g. dP,1 = dP,2. Our goal is to determine the point where642
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(a) Node matching results of APSG scheme

(b) Edge matching results of APSG scheme

Figure 19. Matching results of APSG scheme
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(a) θji(p) < 180◦ (b) θji(p) > 180◦

Figure A1. Construction of projection boundary in map area Ajm(ni)

the projection boundary deviates from b1 and find the equidistant projection boundary643

between two NLM line segments lji(p) and lim(q). Without loss of generality, we examine644

the projection boundary curve in two different cases: 1) The internal angle of vertex645

nji(p) is less than 180◦ (θji(p) < 180◦); and 2) It is greater than 180◦ (θji(p) > 180◦).646

Figure 1(a) shows an example where θji(p) < 180◦. To find the point where647

projection boundary deviate from b1, we draw two additional bisectors that intersect648

with bisector b1 at point np: bisector b2 of the angle between lji(p + 1) and lim(q) and649

bisector b3 of angle θji(p). At point np, the projection distance to NLM line segments650

lji(p), lji(p + 1), and lim(q) becomes the same. After point np, the projection boundary651

deviates from b1 and becomes the red dotted line segment b2.652

When θji(p) > 180◦ as shown in Figure 1(b), bisector b2 is similarly obtained from
the crosspoint of lim(q) and the extended line of lji(p). Next, we determine point nq
on bisector b2 so that its distance to point nji(p) is equal to the projection distance to
lim(q). It is clear that, beyond point nq, bisector b2 becomes the projection boundary. The
remaining problem is to determine the projection boundary between points np and nq.
To address this problem, we first define a Cartesian coordinate whose X-axis crossing at
the origin point np is parallel to lim(q). We denote the Cartesian coordinate of point n
on the transient boundary curve by (x, y). Similarly, the Cartesian coordiantes of point
nji(p) is denoted by (x0, y0). Since y > 0, the projection distance of point n to lim(q)
becomes y + dP,2 which must be equal to the distance between points n and nji(p), i.e.,√

(x− x0)2 + (y− y0)2 = y + dP,2. (A1)

Finally, the transient curve of projection boundary becomes a parabola satisfying the
following equation:

y =
(x− x0)

2 + y2
0 − d2

P,2

2(y0 + dP,2)
. (A2)
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